La fonction f définie su R par f(x)=e^x(e^x-2) 1)calculer le dérivé f' de f et montrer que f'(x)= 2e^x(e^x-1) 2) étudier le signe de f'(x) et le tableau de variation de f 3 ) justifier que f(x)=0 et admet une solution sur (0;1)
f'(x) = e^x(e^x - 2) +e^(2x) = e^x(e^x - 2 + e^x) = 2e^x(e^x - 1)
racine pour x = 0
x -infini 0 infini
f'(x) - 0 +
f(x) 0 \ -1 / infini
f(0) = -1 et f(1) = 1,95 la fonction passe donc du négatif au positif entre 0 et 1 donc il y a une racine dans [0,1] elle vaut environ 0,68 (à l'aide de la fonctio "table"