Partie 2: Pas le choix
On donne la fonction g définie par :
g(x) = (2x + 3)²-(6x + 2)²

1) Développer puis réduire g(x).

2) En factorisant g(x) montrer que g(x) = (8x+5)(-4x+1)

3) Calculer l'image du nombre – 2 par la fonction g.

4) Quels sont les antécédents de 0 par la fonction g?



Sagot :

CZAM

1) Il faut développer chaque terme puis faire réduire l'expression

g(x)=4x²+12x+9-36x²-24x-4=-32x²-12x+5

2) Développer l'expression pour retomber sur le résultat du 1°)

g(x)=(8x+5)(-4x+1)=8x*-4x+8x*1+5*-4x+5=-32x²-12x+5 c'est donc vrai

Ici le * est la multiplication, cela permet de ne pas confondre la lettre x et la multiplication

3) Replacer x par -2

g(2)=(8x-2+5)(-4x-2+1)=(-16+5)(8+1)=-11x9=-99

4) Résoudre g(x)=0 soit

x1=> 8x+5=0 x=-5/8

x2=> -4x+1=0 x=1/4