Bonjour ou bonsoir, 

j'ai un exercice de math qui me pose problème donc je vous met les questions:

1) on suppose que la suite (Un) est convergente de limite l, et ε un réel strictement supérieur à 0:

a) justifier qu'il existe un entier no tel que pour tout n [tex]\geq[/tex] no: (-ε/2 )[tex]\leq[/tex] Un-l [tex]\leq[/tex] (ε/2)

b) En déduire pour tout n [tex]\geq[/tex] no , (-ε) [tex]\leq[/tex] Un+1-Un [tex]\leq[/tex] ε

c) qu'en déduit-on pour la suite (Un+1-Un)?

2) Enoncer la propriété démontré dans la question 1

3) Sa réciproque est -elle vaie ?

 Merci davance