Réponse :
Explications étape par étape
Bonjour
2) Quelle expression ne se factorise pas en 2(n + 1) ?
Justifier.
3n(n+1)-(3n-2)(n+1)
= 3n^2 + 3n - (3n^2 + 3n - 2n - 2)
= 3n^2 + 3n - 3n^2 - 3n + 2n + 2
= 2n + 2
= 2(n + 1)
3(n+3)-n-7
= 3n + 9 - n - 7
= 2n + 2
= 2(n + 1)
2(n-1)+4
= 2n - 2 + 4
= 2n + 2
= 2(n + 1)
3(n+1)-n+1
= 3n + 3 - n + 1
= 2n + 4
= 2(n + 2) non
6(n-1)-4(n-2)
= 6n - 6 - 4n + 8
= 2n + 2
= 2(n + 1)
((5(n+1) /2) - ((n+1)/2)
= (5n + 5 - n - 1)/2
= (4n + 4)/2
= 2n + 2
= 2(n + 1)
(10n+10)/5
= 10n/5 + 10/5
= 2n + 2
= 2(n + 1)
4n+4-2n-2
= 2n + 2
= 2(n + 1)