Bonsoir
n = 2 => 1 + 4 = 1 + 2^2 = (n - 1)^2 + (n - 1) x n^2 = (n - 1)(1 + n^2) = 5 cubes
n = 3 => 4 + 2 x 9 = 4 + 2 x 3^2 = (n - 1)^2 + (n - 1) x n^2 = 22 cubes
n = 4 => 9 + 3 x 16 = 9 + 48 = 57 cubes = (n - 1)^2 + (n - 1) x n^2
cubes = 357 770
(n - 1)^2 + (n - 1) x n^2 = 357770
(n - 1)(n - 1 + n^2) = 357770
(n - 1)(n^2 + n - 1) = 357770
n^3 + n^2 - n - n^2 - n + 1 = 357770
n^3 - 2n + 1 = 357770
n(n^2 - 2) = 357770 - 1
n(n - V2)(n + V2) = 357769
si n = 50
50(50 - V2)(50 + V2) = 124900
si n = 60
60(60 - V2)(60 + V2) = 215880
si n = 70
70(70 - V2)(70 + V2) = 342860
si n = 71
71(71 - V2)(71 + V2) = 357769
=> donc n = 71