(REPOST CAR URG€NT) bonjour pouvez-vous m'aider pour ces exercices de mathématiques, et si possible m'expliquer comment vous avez eu votre réponse si cela est possible (pour pouvoir mieux comprendre mes erreurs par la suite),merci d'avance.

Réponse :
38) développer et réduire
A = (5 + √15)(√5 - √3)
= 5√5 - 5√3 + √15 x √5 - √15 x √3
= 5√5 - 5√3 + √(3 x 5) x √5 - √(3 x 5) x √3
= 5√5 - 5√3 + √3 x √5 x √5 - √5 x √3 x √3
= 5√5 - 5√3 + 5√3 - 3√5
AB = 2√5
B = (√5 + √2)(√10 - 1)
= √5 x √10 - √5 + √2 x √10 - √2
= √5 x √(2 x 5) - √5 + √2 x √(2 x 5) - √2
= √5 x √2 x √5 - √5 + √2 x √2 x √5 - √2
= 5√2 - √5 + 2√5 - √2
= 4√2 + √5
39) démontrer que ABCD est un carré et calculer son aire
AB = √200 - √98
= √(2 x 100) - √(2 x 49)
= 10√2 - 7√2
= 3√2
BC = √(350)/√7) - √8
= √(7 x 50)/√7) - √(2 x 4)
= √7 x √(2 x 25)/√7) - √(2 x 4)
= 5√2 - 2√2
= 3√2
AB = BC = 3√2 ⇒ ABCD est un carré
A = (3√2)² = 18
40)
a) exprimer la longueur TC en fonction de a
HTC triangle rectangle en H ⇒ th.Pythagore
TC² = a² + (2 a)² = 5 a² a > 0 a réel
TC = √(5 a²) = a√5
b) donner une valeur de a pour laquelle la longueur TC est un nombre entier naturel
soit a réel positif = √5
donc TC = √5 x √5 = 5 ∈ N
Explications étape par étape :