Sagot :
Bonjour,
L'affirmation 1 est fausse, car :
[tex]\frac{3}{5}+\frac{1}{2} = \frac{6}{10}+\frac{5}{10} = \frac{11}{10} \neq \frac{3+1}{5+2}[/tex]
L'affirmation 2 est fausse, car :
[tex]f(-1)=5-3(-1)=5+3=8 \ \neq -2[/tex]
L'affirmation 3 est fausse, car :
[tex]Exp\ 1 : ("nombre\ premier") = \Left\{2, 3, 5, 7, 11\Right\}\\\\Exp\ 2 : ("nombre\ pair") = \Left\{2, 4, 6\Right\}\\\\P("nombre\ premier") = \frac{card("nombre\ premier")}{card(\Omega)}= \frac{5}{11}\\\\P("nombre\ pair") = \frac{card("nombre\ pair")}{card(\Omega)} = \frac{3}{6} = \frac{1}{2}\\\\\frac{5}{11} < \frac{1}{2}[/tex]
Il est donc plus probable d'obtenir un nombre pair sur l'expérience 2 que d'obtenir un nombre premier sur l'expérience 1.
L'affirmation 4 est vraie, car :
[tex]\forall \ x \in \mathbb R : (2x+1)^{2} - 4 = (2x+1)^{2} - 2^{2} = ((2x+1)+2)((2x+1)-2)\\\\\Leftrightarrow (2x+1)^{2} - 4 = (2x+3)(2x-1)[/tex]
Je te souhaite de bonnes révisions ;)
Utilise Nosdevoirs pour t'aider à réviser ton brevet !
Nosdevoirs est une communauté de plus de 200 millions d'étudiants et d'experts qui mettent en commun leurs connaissances.
#ApprendsAvecNosdevoirs