Sagot :
bonjour,
Pour progresser en math, il faut t'entrainer. Je te donne la méthode, mais tu feras les calculs.
Demande en commentaires si tu as besoin de vérifier tes solutions, où si tu comprends pas.
Pour étudier le sens de variation d'une fonction, on va étudier le signe de sa dérivée.
Si la dérivée est positive, ta fonction est croissante sur ton intervalle, si ta fonction dérivée est négative, alors ta fonction est décroissante sur ton intervalle.
Donc étape 1 : il faut que tu calcules la dérivée de la fonction ( tu peux t'aider de ton cours . Pour mémoire la dérivée de x^(n) est nx^(n-1)
et les constantes disparaissent à la dérivation ( la dérivée d'une constante est 0 )
étape 2 : tu vas te retrouver avec une fonction , appelons- la f'(x) , du second degré. Il faut que tu cherches les racines, c'est à dire les valeurs de x tel que f'(x) = 0 . Là encore tu as dans ton cours une méthode pour cela . Soit c'est factorisable, soit tu résous par discriminant ( la méthode avec " delta " )
étape 3 : ta fonction du second degré est de la forme : ax² +bx +c . on sait qu'une fonction du second degré est du signe de "a" sauf en les racines si elles existent.
donc le tableau de signe de ta dérivée donne : signe de a ; arrivée à la racine =0 ; signe de -a ; racine = 0 ; puis signe de a .
Donc comme "a" est positif, cela va donner pour ta fonction dérivée :
positif ; racine = 0 ; négatif ; racine =0, positif
et donc pour ta fonction initiale : croissante, une barre à la racine ; décroissante , une barre à la racine, croissante
et en valeur de Xdans ton tableau : - infini ; racine 1 ; racine 2 ; + infini
lorsque ta fonction est à la racine de ta dérivée , ta fonction change de sens de variation, elle atteint donc un pic ou un minimum avant de partir dans l'autre sens.
Bon courage .