URGENT ! N'y arrive pas du tout .. :/ De l'aide me serait très utile Merci d'avance :)
E(3,4)= 3 car 3,4 appartient à l'intervalle 3,4
E(-5,6)=-6 car -5,6 appartient à l'intervalle -6,-5
1) Soit x un nombre réel.
Prouver que : x-1<E(x)< x
2) On considère la fonction f définie par : f(x)= E(x)/x
a) déterminer l'ensemble de définition de la fonction f
b) calculer limf(x) quand x tend vers + l'infini
3) On considère la fonction f définie par : f(x) = x.E(1/x)
a) déterminer l'ensemble de définition de la fonction f
b) calculer lim f(x) quand x tend vers O- et vers O+
Dessines E(x) ! c'est un escalier infini...
sur le meme dessin placeles 2 droites y=x et y=x-1... et tu verras le 1)
E(x)/x existe sur R* (x<>0)
et sa limite est evidemment 1 d'apres l'encadrement 1)
xE(1/x) est definie pour x<>0 elle aussi et quand x tend vers O+ , 1/x tend vers inf
E(1/x) est comme le dit la question precedente, equivalent à 1/x donc xE(1/x) tend vers 1 Meme resultat en 0- en passant à -x