Bonjour,
Besoin d'aide.

On répète quatre fois de manière indépendante une expérience aléatoire dont la probabilité de succès est 0,35.

Quelle est la probabilité d'obtenir au moins un succès ?​


Sagot :

Bonjour,

On note X le nombre de succès.

Tu reconnais une loi binomiale de paramètre n = 4 et p = 0,35. (Répétition de 4 expériences de Bernoulli indépendantes avec 0,35 comme probabilité de succès et X compte le nombre de succès). (On peut le noter: X↪B(4; 0,35))

X prend donc les valeurs 0, 1, 2, 3 et 4. (On peut le noter: [tex]X(\Omega) = [|0, 4|][/tex] où Omega est l'univers)

Tu veux la probabilité d'obtenir au moins un succès donc P(X = 1) + P(X = 2) + P(X = 3) + P(X = 4).

Pour faire moins de calcul, on peut directement faire 1 - P(X = 0).

Rappel, pour une loi binomiale:

[tex]\forall k\in X(\Omega), P(X = k) = \left(\begin{array}{ccc}n\\k\end{array}\right)p^k(1-p)^{n-k}[/tex]

Donc,

[tex]P(X = 0) = \left(\begin{array}{ccc}4\\0\end{array}\right)0,35^0(1-0,35)^{4-0} = 1\times 1\times0,65^4[/tex]

Finalement, 1 - P(X = 0) ≅ 0,82.

La probabilité d'obtenir au moins un succès est d'environ 0,82.

Bonne journée.