bonsoir

resoudre dans R l'inequation

[tex]e^{2x+4} \geq 1[/tex]

S =................


Sagot :

Réponse :

S=[-2, ∞[

Explications étape par étape

La fonction exponentiel est monotone et bijective donc pour un y, il existe un seul x. Aussi notons que 1 = e^0

De là, l'équation est réductible à

e^(2x+4) >= e^(0)

Qui peut se réduire à

2x + 4 >= 0 qui est une inéquation du 1 er degré

donc x >= -2

Réponse :

S=[-2, ∞[

Explications étape par étape

La fonction exponentiel est monotone et bijective donc pour un y, il existe un seul x. Aussi notons que 1 = e^0

De là, l'équation est réductible à

e^(2x+4) >= e^(0)

Qui peut se réduire à

2x + 4 >= 0 qui est une inéquation du 1 er degré

donc x >= -2