Sagot :
de 1 à 6 les résultats sont les suivants dans l'ordre
20,271 ; 10,369 ; 7,3361 ;6,3549 ; 6,9682; 10,057
le coût moyen le plus bas semble être obtenu pour x = 4000 et vaut 6 394,9€
c'est un calcul de dérivée
C'(x) = (0,1x.e^x - 0,1xe^x -20 )/x² = (0,1.e^x(x-1)-20)/x²
f(x)= 0.1x e^x -0.1e^x -20 => f(x) = 0,1.e^x(x-1)-20
f'(x) = 0,1e^x(x-1) + 0,1.e^x = 0,1.e^x(x-1+1) = 0,1.x.e^x
pour x appartenant à [0;6] f'(x) >=0 donc f(x) toujours croissante suer l’intervalle
f(0) = -20,1 et f(6) = 181,71
la courbe rencontre donc une seule fois l'axe des x entre 4 et 5
la racine vaut environ 4,15 f(x) est négative avant et positive après.donc comme f(x) était la dérivée de la fonction de départ, on voit que pour 4,15 cette fonction initiale passe par un minimum.
c'est à peu près la réponse trouvée avant (4000 tonnes)
20,271 ; 10,369 ; 7,3361 ;6,3549 ; 6,9682; 10,057
le coût moyen le plus bas semble être obtenu pour x = 4000 et vaut 6 394,9€
c'est un calcul de dérivée
C'(x) = (0,1x.e^x - 0,1xe^x -20 )/x² = (0,1.e^x(x-1)-20)/x²
f(x)= 0.1x e^x -0.1e^x -20 => f(x) = 0,1.e^x(x-1)-20
f'(x) = 0,1e^x(x-1) + 0,1.e^x = 0,1.e^x(x-1+1) = 0,1.x.e^x
pour x appartenant à [0;6] f'(x) >=0 donc f(x) toujours croissante suer l’intervalle
f(0) = -20,1 et f(6) = 181,71
la courbe rencontre donc une seule fois l'axe des x entre 4 et 5
la racine vaut environ 4,15 f(x) est négative avant et positive après.donc comme f(x) était la dérivée de la fonction de départ, on voit que pour 4,15 cette fonction initiale passe par un minimum.
c'est à peu près la réponse trouvée avant (4000 tonnes)