Bonjour à vous,
Un problème de mathématique me pose problème, donc le voilà sans plus tarder:
Une entreprise produits des crayons de couleur. Lorsque la quantité ( exprimée en millier ) est comprise entre 4 et 10, on admet que le coût de production journalier ( exprimée en euros ) est donné par C(q) = q^3 - 48 + 600. L’entreprise vend 99 euros chaque milliers de crayons.
Questions:
1.a) Exprimer la recette pour la vente de q milliers de crayons.
1.b) Montrer que le bénéfice journalier B(q), exprimée en euros, est donné par B(q) = -q^3 +147q -600
2.a) Calculer B'(q) ou B désigne la dérivée de la fonction B.
2.b) Construire le tableau de variations de la fonction B sur l'intervalle [4;10].
2.c) En déduire le nombre de milliers de crayons a produire quotidiennement pour un bénéfice maximal.
2.d) Quel est alors ce bénéfice maximal?
Je bloque à la question 2.b)c) J'ai calculé le discriminant delta, dans le lequel je trouve deux solutions x1= 49 et x2= 0 Et lorsque je fais mon tableau de variations, je trouve un bénéfice maximale de 49 € pour une production de crayons de - 111 046 crayons ( nombre négatif donc faux ) Merci de bien vouloir m'aider le plus rapidement possible, en attendant vos réponses! :$
1.a) Exprimer la recette pour la vente de q milliers de crayons.
R(q)=99q
1.b) Montrer que le bénéfice journalier B(q), exprimée en euros, est donné par B(q) = -q^3 +147q -600
B(q)=R(q)-C(q)
=99q-(q^3 - 48q + 600)
=99q-q^3+48q-600
=-q^3+147q-600
2.a) Calculer B'(q) ou B désigne la dérivée de la fonction B.
B'(q)=-3q²+147
2.b) Construire le tableau de variations de la fonction B sur l'intervalle [4;10].
B est croissante sur [4;7] et décroissante sur [7;10]
2.c) En déduire le nombre de milliers de crayons a produire quotidiennement pour un bénéfice maximal.
le bénéfice est maximal si q=7 soit 7000 unités
2.d) Quel est alors ce bénéfice maximal?
ce Bénéfice maximal vaut alors B(7)=135 soit 135 € par jour