Sagot :
Réponse :
Bonsoir
Explications étape par étape :
Dans le triangle ACB rectangle en C, on a AC = 25 cm et AB = 30 cm
D'après le théorème de Pythagore, on a
AB² = AC² + BC²
on cherche BC
donc on a
BC² = AB² - AC²
Or AC = 25 cm et AB = 30 cm
donc application numérique
BC² = 30² - 25²
BC²= 900 - 625
BC² = 275
BC = √275
BC ≈ 16,6 cm arrondi au mm près
Dans le triangle ACD rectangle en C, on a angle CAD = 49° et AC = 25 cm
D'après la formule de la tangente d'un angle qui est le rapport du coté opposé sur le coté adjacent, on a
coté opposé à l'angle CAD = CD
coté adjacent à l'angle CAD = AC
angle CAD = 49°
on a donc :
tan (angle CAD) = CD/ AC
On cherche CD
donc on a
CD = AC × tan (angle CAD)
Or angle CAD = 49° et AC = 25 cm
donc application numérique
CD = 25 × tan (49°)
CD ≈ 28,8 cm arrondi au mm près.
On cherche la longueur BD
On sait que BD = BC + CD
Or BC = 16,6 cm et CD = 28,8 cm
donc application numérique
BC = 16,6 + 28,8
BC = 45,4 cm
Donc la longueur BC mesure approximativement 45,4 cm arrondi au mm près