👤

Sagot :

Bonsoir,

1. Développer l'expression A :

A = (6x + 5)² - (6x + 5)(7x + 2)

Identité remarquable :

  • (a + b)² = a² + 2ab + b²

A = 36x² + 60x + 25 - (6x + 5)(7x + 2)

Double distributivité :

  • (a + b)(c + d) = ac + ad + bc + bd

A = 36x² + 60x + 25 - (42x² + 12x + 35x + 10)

A = 36x² + 60x + 25 - 42x² - 47x - 10

A = -6x² + 13x + 25 - 10

A = -6x² + 13x + 15 ✅️

2. Factoriser l'expression A :

A = (6x + 5)² - (6x + 5)(7x + 2)

Facteur commun : 6x + 5

A = (6x + 5)(6x + 5 - (7x + 2))

A = (6x + 5)(6x + 5 - 7x - 2)

A = (6x + 5)(-x + 3) ✅️

Bonne soirée.

TEAMCE

Bonsoir,

A = (6x + 5)² - (6x + 5)(7x + 2)

1. Développer l'expression A :

A = (6x + 5)² - (6x + 5)(7x + 2)

>> identité remarquable :

  • (a + b)² = a² + 2ab + b²

A = (6x)² + 2*6x*5 + 5² - (6x + 5)(7x + 2)

A = 36x² + 60x + 25 - (6x + 5)(7x + 2)

>> double distributivité :

  • (a + b)(c + d) = ac + ad + bc + bd

A = 36x² + 60x + 25 - (42x² + 12x + 35x + 10)

A = 36x² + 60x + 25 - (42x² + 47x + 10)

A = 36x² + 60x + 25 - 42x² - 47x - 10

A = -6x² + 13x + 15

2. Développer l'expression A :

A = (6x + 5)² - (6x + 5)(7x + 2)

>> on met en évidence le facteur commun :

A = (6x + 5)(6x + 5) - (6x + 5)(7x + 2)

>> On factorise :

  • ka - kb = k(a - b)

A = (6x + 5)(6x + 5 - (7x + 2))

A = (6x + 5)(6x + 5 - 7x - 2)

A = (6x + 5)(3 - x)

* = multiplication

Bonne soirée

© 2024 IDNLearn. All rights reserved.