Bonjour
cos(x)**2 + sin(x)**2 = 1
On cherche sin(x), donc on résout :
sin(x)**2 = 1 - cos(x)**2
sin(x)**2 = 1 - (3/5)**2
sin(x)**2 = 1 - 9/25
sin(x)**2 = 16/25
sin(x) = √16/25 soit 4/5 ou -4/5
On nous dit que x appartient à [-pi/2;0] donc la partie droite du dessous du cercle trigonométrique, qui correspond à un sinus négatif donc la valeur exacte de sin(x) est de -4/5.
J’espère que tu as compris