f(x) = (x² - 1)/x et f(1) = 0
f(1+h) = ((x+h)² - 1)/(1+h) = (1 + 2h + h² - 1)/(1+h) = (2h + h²)/(1+h)
f'(1) = lim ((f(1+h) - f(1))/(1+h-1)= lim ((f(1+h) - f(1))/(1+h-1) = lim ((2h + h²)/(h)
h ->0 h ->0 h ->0
= lim (2+h) = 2 donc f(x) dérivable en 1
h ->0