Sagot :
Réponse :
calculer la vitesse du bateau
soit v : la vitesse du bateau
de A vers B le bateau descend et la vitesse du courant est dans le même sens que la vitesse du bateau, donc on écrit ; v + 4
donc la distance AB = 42 km = (v + 4) t1 ⇔ t1 = 42/(v+4)
de B vers A le bateau monte vers l'amont et la vitesse du courant est de sens contraire de la vitesse du bateau donc on écrit : v - 4
BA = 42 km = (v - 4) t2 ⇔ t2 = 42/(v- 4)
sachant que t2 = t1 + 1.2 h ⇔ t2 - t1 = 1.2 h = 6/5 h
on écrit : 42/(v - 4) - 42/(v + 4) = 6/5
⇔ 42(v+4)/(v-4)(v+ 4) - 42(v - 4)/(v+4)(v- 4) - 6/5 = 0
⇔ 210(v+4) - 210(v - 4) - 6(v+4)(v-4)]/5(v+4)(v-4) = 0
⇔ 210(v+4) - 210(v - 4) - 6(v+4)(v-4)] = 0
⇔ 210 v + 840 - 210 v + 840 - 6(v² - 16) = 0
⇔ - 6 v² + 96 + 1680 = 0 ⇔ - 6 v² + 1776 = 0
⇔ v² = 1776/6 = 296 ⇒ v = √296 ≈ 17.2 km/h la vitesse étant positive
donc la vitesse propre du bateau est de 17.2 km/h
Explications étape par étape :