Sagot :
Réponse :
Bonjour
Explications étape par étape :
1)
Aire du grand rectangle = 5 x 12 = 60
On va enlever les 2 coins de gauche qui sont des triangles rectangles de côté "x" dont l'aire est pour chacun x²/2 donc pour les deux : x².
On va aussi enlever le rectangle à droite dont l'aire est : 5x.
Aire piscine = 60- x²-5x ou :
A(x)=-x²-5x+60
2)
On va développer ce qui est donné :
-(x+5/2)²+265/4=-(x²+5x+25/4) +265/4=-x²-5x-25/4+265/4
=x²-5x+240/4=-x²-5x+60
Donc :
A(x)=-(x+5/2)²+265/4
3)
a)
A(x)=50.25 donne :
50.25=-(x+5/2)²+265/4 soit avec 265/4=66.25:
50.25+ (x+5/2)²-66.25=0
(x+5/2)²-16=0
b)
Cette équation s'écrit aussi :
(x+5/2)²-4²=0
On a : a²-b²=(a+b)(a-b) avec :
a=x+5/2 et b=4.
[(x+5/2)+4] [ (x+5/2)-4]=0
Avec 4=8/2 :
(x+13/2)(x-3/2)=0
x+13/2=0 OU x-3/2=0
x=-13/2 OU x=3/2
4)
On ne peut garder que le "x" positif.
Donc x=3/2 soit 1.5 m.
Et on a bien : 0 < x < 2.5
Le plus grand côté de la piscine mesure : 12- 1.5 x 2= 9m
Le côté gauche mesure : 5 - 1.5 x 2= 2m
Chaque coin est un triangle rectangle de 1.5 m de côté.