calcul bonjour,



merci​


Calcul Bonjour Merci class=

Sagot :

Bonjour

P = - 9/7 x - 28/3 : 6/15

P =  252/21 x 15/6

P = 3 780/126

P = (126 x 30) / (126 x 1)

P = 30

R= - 3/25 + - 24/15 : 21/- 35

R = - 3/25 - 24/15 x - 35/21

R = - 3/25 + 840/315

R = - 2/25 + (105 x 8) / (105 x 3)

R = - 2/25 + 8/3

R = (- 2 x 3) / (25 x 3) + (8 x 25) / (3 x 25)

R = - 6/75 + 200/75

R = 194/75

S = - 2/3 x 6/8 - 3/4 : 1/- 2

S = - 12/24 - 3/4 x - 2

S = - 12/24 + 6/4

S = (12 x - 1) / (12 x 2) + (2 x 3) / (2 x 2)

S = - 1/2 + 3/2

S = 2/2

S = 1.

Bjr

P =

[tex] \frac{ - 9}{7} \times \frac{ - 28}{3} \div \frac{6}{15} [/tex]

P =

[tex] \frac{9}{7} \times \frac{28}{3} \div \frac{6}{15} [/tex]

P =

[tex] \frac{9}{7} \times \frac{28}{3} \times \frac{15}{6} [/tex]

P =

[tex] \frac{3}{7} \times 28 \times \frac{15}{6} [/tex]

P =

[tex]3 \times 4 \times \frac{5}{2} [/tex]

P =

[tex]3 \times 2 \times 5[/tex]

P =

[tex]30[/tex]

____________________

R =

[tex] \frac{ - 3}{25} + \frac{ - 24}{15} \div \frac{21}{ - 35} [/tex]

R =

[tex] \frac{ - 3}{25} + \frac{24}{15} \div \frac{21}{35} [/tex]

R =

[tex] \frac{ - 3}{25} + \frac{24}{15} \times \frac{35}{21} [/tex]

R =

[tex] \frac{ - 3}{25} + \frac{8}{5} \times \frac{35}{21} [/tex]

R =

[tex] \frac{ - 3}{25} + \frac{8}{5} \times \frac{5}{3} [/tex]

R =

[tex] \frac{ - 3}{25} + 8 \times \frac{1}{3} [/tex]

R =

[tex] \frac{ - 3}{25} + \frac{8}{3} [/tex]

R =

[tex] \frac{191}{75} [/tex]

R =

[tex]2.54[/tex]

____________________

S =

[tex] \frac{ - 2}{3} \times \frac{6}{8} - \frac{3}{4} \div \frac{1}{ - 2} [/tex]

S =

[tex] - \frac{2}{3} \times \frac{6}{8} - \frac{3}{4} \div \frac{1}{ - 2} [/tex]

S =

[tex] - \frac{2}{3} \times \frac{6}{8} + \frac{3}{4} \div \frac{1}{2} [/tex]

S =

[tex] - \frac{2}{3} \times \frac{6}{8} + \frac{3}{4} \times 2[/tex]

S =

[tex] - 2 \times \frac{2}{8 } + \frac{3}{4} \times 2[/tex]

S =

[tex] - \frac{2}{4} + \frac{3}{4} \times 2[/tex]

S =

[tex] - \frac{1}{2} + \frac{3}{4} \times 2[/tex]

S =

[tex] - \frac{1}{2} + \frac{3}{2} [/tex]

S =

[tex]1[/tex]