Bonjour
A = 2/(x + 1) - 1/(x + 2)
A = [2(x + 2) - 1(x + 1)]/[(x + 1)(x + 2)]
A = (2x + 4 - x - 1)/[(x + 1)(x + 2)]
A = (x + 3)/(x + 1)(x + 2)
B = 2x/(x + 3) - 2
B = [2x - 2(x + 3)]/(x + 3)
B = (2x - 2x - 6)/(x + 3)
B = -6/(x + 3)
C = 1/(2x + 1) - 1/(2x - 1)
C = (2x - 1 - 2x - 1)/((2x + 1)(2x - 1)
C = 0
D = 2 + (x/2)/(1 + x/2)
D = [2(1 + x/2) + (x/2)]/(1 + x/2)
D = (2 + x + x/2)/(1 + x/2)
D = (2 + 2x/2 + x/2)/(1 + x/2)
D = (2 + 3x/2)/(1 + x/2)
E = (3 - 5/(x + 2))^2
E = [[3(x + 2) - 5]/(x + 2)]^2
E = [(3x + 6 - 5)/(x + 2)]^2
E = [(3x + 1)/(x + 2)]^2
E = (3x + 1)^2/(x + 2)^2
E = (9x^2 + 6x + 1)/(x^2 + 4x + 4)