bonsoir j'ai besoin d'aide pour mon dm de math
1) démonter, à l'aide d'un contre-exemple, que l'affirmation suivante est fausse:
《Si un nombre entier est divisible par 2, alors il est divisible par 4》
2) Trouver un nombre entier respectant les conditions suivantes :
•strictement supérieur à 3 000 et strictement inférieur à 3 100;
•à la fois multiple de 3 mais pas de 9;
•divisible par 2 mais pas par 4.
peut-on trouver plusieurs nombres entiers vérifiant ces conditions ?​


Sagot :

bjr

1) démonter, à l'aide d'un contre-exemple, que l'affirmation suivante est fausse:

《Si un nombre entier est divisible par 2, alors il est divisible par 4》

contre-exemple : 6

6 est divisible par 2 mais n'est pas divisible par 4

2) Trouver un nombre entier respectant les conditions suivantes :

•strictement supérieur à 3 000 et strictement inférieur à 3 100;

•à la fois multiple de 3 mais pas de 9;

•divisible par 2 mais pas par 4.

il est multiple de 3 et divisible par 2, c'est un multiple de 3 et de 2

donc un multiple de 6

les multiples de 6 entre 3000 et 3100

3000  ;  3006  ;  3012  ;  3018  ;  3024  ;  3030  ; 3036  ;  3042  ; 3048

3054  ;  3060  ;  3066  ; 3072  ;  3078  ;  3084  ;  3090  ; 3096

• un nombre est divisible par 4 lorsque les deux chiffres de droite forment

un nombre multiple de 4: 00, 04, 08, 12,............80, 84, 88, 92, 96

  on supprime tous les multiples de 4 (je les souligne)

3000  ;  3006  ;  3012  ;  3018  ;  3024  ;  3030  ; 3036  ;  3042  ; 3048

3054  ;  3060  ;  3066  ; 3072  ;  3078  ;  3084  ;  3090  ; 3096

• parmi ceux qui restent on élimine les nombres divisibles par 9. Ceux dont la somme des chiffres est un multiple de 9

(je les mets en italiques, caractères penchés)

3000  ;  3006  ;  3012  ;  3018  ;  3024  ;  3030  ; 3036  ;  3042  ; 3048

3054  ;  3060  ;  3066  ; 3072  ;  3078  ;  3084  ;  3090  ; 3096

les nombres cherchés sont ceux qui ne sont ni soulignés, ni en italiques

je les mets en caractères gras

3018 ; 3030 ; 3054 ; 3066 ; 3090