👤

Bonjour, je ne comprends cette exercice sur les suites...

On définit une suite (un) par : u0 = 1 Un+1 = 1/2Un + 2n - 1 pour tout n E N.

1. Calculer les premiers termes de la suite (un). Que peut-on conjecturer concernant sa nature et son sens de variation ?

2. On pose Vn = Un - 4n + 10, pour tout ne N.
a) Montrer que (Vn) est une suite géométrique que l'on caractérisera.

b) En déduire l'expression de Vn en fonction de n puis celle de Un en fonction de n.

c) On pose: Sn Σ Uk · Donner l'expression de Sn en fonction de n. ​

Sagot :

CAYLUS

Réponse :

Explications étape par étape :

1)

[tex]u_0=1\\u_1=-0,5\\u_2=0,75\\u_3=3,375\\u_4=6,6875\\u_5=10,34375\\u_6=14,171875\\u_7=18,0859375\\u_8=22,04296875\\u_9=26,02148438\\u_{10}=30,01074219\\\\D_1=u_1-u_0=-0.5-1=-1.5\\D_2=1,25\\D_3=2,625\\D_4=3,3125\\D_5=3,65625\\D_6=3,828125\\D_7=3,9140625\\D_8=3,95703125\\D_{9}=3,978515625\\D_{10}=3,989257813\\[/tex]

On peut penser que la suite (U(n)) n'est ni arithmétique, ni géométrique, mais elle est croissante.

2)

[tex]u_0=1\\u_{n+1}=\dfrac{u_{n}}{2} +2*n-1\\v_n=u_n-4*n+10\\\\a)\\v_{n+1}=u_{n+1}-4*(n+1)+10\\=\dfrac{u_{n}}{2} +2*n-1-4*n-4+10\\=\dfrac{u_{n}}{2} -2*n+5\\=\dfrac{1}{2} *u_n-4*n+10\\=\dfrac{1}{2}*v_n\\\\v_0=u_0-4*0+10=11\\\\\\b)\\\boxed{v_n=11*(\dfrac{1}{2})^n=\dfrac{11}{2^n} }\\\\u_n=v_n+4n-10\\\\\boxed{u_n=\dfrac{11}{2^n} +4n-10}\\[/tex]

[tex]S_0=u_0=1\\\\S_1=u_0+u_1=1+\dfrac{11}{2^1} -10=-9+\dfrac{11}{2^1} \\\\S_2=u_0+u_1+u_2=1+\dfrac{11}{2^1} -10+1+\dfrac{11}{2^2} -10=-2*9+11*(\dfrac{1}{2^1}+\dfrac{1}{2^2} )\\\\S_3=-3*9+11*(\dfrac{1}{2^1}+\dfrac{1}{2^2}+\dfrac{1}{2^3} )\\...\\\\\displaystyle S_n=-n*9+11*\sum_{i=1}^n(\dfrac{1}{2^1}+...\dfrac{1}{2^2}+\dfrac{1}{2^n} )\\=-9n+\dfrac{\dfrac{1}{2^{n+1} }-1}{\dfrac{1}{2}-1}}\\=-9n-2*(\dfrac{1-2^{n+1}}{2^{n+1}})[/tex]

© 2024 IDNLearn. All rights reserved.