Réponse :
3) Montrer que les vecteurs MN = M'N'
d'après la relation de Chasles vec(MN) = vec(MM') + vec(M'N)
or vec(MM') = vec(NN') donc vec(MN) = vec(NN') + vec(M'N)
⇔ vec(MN) = vec(M'N) + vec(NN') = vec(M'N') relation de Chasles
donc vec(MN) = vec(M'N')
Explications étape par étape :