Réponse :
1 er exercice
ax2−6ax=0
(a)⋅x2+(−6a)⋅x=0
x⋅[(a)⋅x+(−6a)]=0
x1=0
(a)⋅x2+(−6a)=0
x2=−(−6a)a,a≠0
x2=−(a)
⋅(−6)(a)=6
2nd exercice
−2bx⋅(3x+1)=0
−6bx2−2bx=0
(−6b)⋅x2+(−2b)⋅x=0
x⋅[(−6b)⋅x+(−2b)]=0
x1=0
(−6b)⋅x2+(−2b)=0
x2=−(−2b)−6b,−6b≠0
x2=−(2b)
⋅(−1)(2b)⋅(−3)=−13
3eme exercice
2cx+3c=0
(2c)⋅x+(3c)=0
x=−(3c)2c,2c≠0
x=−(c)
⋅(3)(c)⋅(2)=−32