Objectif : Modéliser une situation à l'aide d'une fonction de type f(x) = ax?
Intro: Lucas veut vérifier la recommandation de sa soeur: « Attention, quand il pleut, la distance de freinage à 130 km/h est presque deux fois plus grande que sur une route sèche. Il trouve sur Internet les distances de freinage en fonction de la vitesse sur route sèche.
Tableau :
V (en km/h) 70 80 100 110 130
d (en m) 25 32 49 60 84
1) S'approprier - Valider
a) Calculer la distance supplémentaire de freinage quand on roule à 130 km/h par rapport à 110 km/h.
b) Vérifier que cela représente une augmentation de 40 %.
2) Réaliser - Analyser
a) La distance de freinage est-elle proportionnelle au temps ?, Justifier la réponse.
b) Compléter le tableau suivant. Arrondir à 0,001 près.
Tableau :
v(en km/h) 70 80 100 110 130
d (en m) 25 32 49 60 84
D (sur) v2 (au carré)
c) En déduire une relation entre la distance de freinage et la vitesse.
Remarque : On dit que la distance est proportionnelle au carré de la vitesse. Réaliser - Communiquer Pour modéliser la distance de freinage (en m) sur route mouillée en fonction de la vitesse (en km/h), on définit sur [0 ; 130] la fonc- tion f telle que f(x) = 0,009 8x2.
a) Représenter la fonction f dans un repère orthogonal. b) Décrire l'allure de la courbe obtenue.
4) Réaliser - Valider
a) Calculer f(130). Arrondir à l'entier.
b) En déduire la distance de freinage à 130 km/h sur route mouillée.
c) Vérifier que cela représente une augmentation de 98 % par rapport à la distance de freinage sur route sèche.
Pouvez vous répondre à ça s'il vous plaît, Mercii d'avance :)