Sagot :
Réponse:
1) Justifions que x²≤x . Sachant que x appartient à l'intervalle [0;1] qui signifie que x ne doit pas être inférieure à 0 ,que x ne doit pas être supérieur à 1 mais que x peut être 0 car où 1 car on a l'égalité ≤ . Dans l'énoncé on a l'égalité < où =, cela voudrait dire que x² doit être égal à x ou x² doit être infèrieur à x. Prenons le cas où x²<x ex: x=0,1;0,2;0,3...0,9 quand on élève ces nombres au carré ils sont inférieurs à x donné . Le cas où x²=x ex: x= 0 et x= 1 lorsque on élève ces nombres au carré ils donnent le même nombre à x donné , c'est pour celà que x²≤x. 2) Déduisons que x³≤x ici c'est comme l'autre , il faudrait seulement savoir que quand on élève un nombre au cube il serait tellement petit que ce nombre au carré et que 0 et 1 donne le même résultat élevé au cube donc pour solution on a pour x>x³ : s={0,1;0,2...0,9} et pour x=x³ : s={0;1}.
Explications étape par étape:
Bsr, j'espère que j'ai pu vous aidez à la prochaine.