👤

Sagot :

Réponse :

Résoudre l'équation

(2 y - 4)(5 y + 4) - 16 + 25 y² = 0 ⇔ (2 y - 4)(5 y + 4) - (16 - 25 y²) = 0

⇔ (2 y - 4)(5 y + 4) - (4 - 5 y)(4 + 5 y) = 0

    (5 y + 4)(2 y - 4 - 4 + 5 y) = 0  ⇔ (5 y + 4)(7 y - 8) = 0  produit de facteurs nul

⇔ 5 y + 4 = 0 ⇔ y = - 4/5  ou  7 y - 8 = 0  ⇔ y = 8/7

Explications étape par étape

MPOWER

Réponse :

Bonjour,

(2y – 4)(5y + 4) – 16 + 25y² = 0

⇔ (2y – 4)(5y + 4) + 25y² – 16 = 0

⇔ (2y – 4)(5y + 4) + (5y)² – 4²= 0

⇔ (2y – 4)(5y + 4) + (5y – 4)(5y + 4) = 0

⇔ (5y + 4)[(2y – 4) + (5y – 4)] = 0

⇔ (5y + 4)(2y – 4 + 5y – 4) = 0

⇔ (5y + 4)(7y – 8) = 0

Or A × B = 0 A = 0 ou B = 0

5y + 4 = 0

5y = –4

y = –4/5

ou

7y – 8 = 0

7y = 8

y = 8/7

Donc S = {–4/5 ; 8/7}

View image MPOWER

© 2024 IDNLearn. All rights reserved.