Sagot :
Réponse :
Explications étape par étape :
■ E(x) = (2x + 1)(3x – 4) + 5x(-x + 1)
= 6x² - 8x + 3x - 4 - 5x² + 5x
= x² - 4 <-- Forme développée et réduite
= (x-2) (x+2) <-- Forme factorisée
■ E(0) = - 4
■ E(1/2) = E(0,5) = 0,25 - 4 = - 15/4 = - 3,75 .
Bonjour :)
Réponse en explications étape par étape :
# Exercice n°3 : Soit l'expression " E = (2x + 1)(3x - 4) + 5x(-x + 1) " :
- Questions :
1. Développer, puis réduire E :
E = (2x + 1)(3x - 4) + 5x(-x + 1)
E = (2x * 3x) - (2x * 4) + (1 * 3x) - (1 * 4) - (5x * x) + (5x * 1)
E = 6x² - 8x + 3x - 4 - 5x² + 5x
E = 6x² - 5x² - 8x + 3x + 5x - 4
E = x² - 8x + 8x - 4
E = x² + 0 - 0 - 4
E = x² - 4
2. Calculer les valeurs exactes de E lorsque :
a) x = 0 :
E = x² - 4
E = (0)² - 4
E = 0 - 4
E = - 4
b) x = 1/2 :
E = x² - 4
E = (1/2)² - 4
E = 1/4 - 4
E = (- 4 * 4 + 1) / 4
E = (- 16 + 1) / 4
E = - 15/4
Voilà