Sagot :
Bonsoir :)
Réponse en explications étape par étape :
- Question : Factoriser chaque expressions comme identité remarquable :
A = 9x² + 30x + 25
A = (3x)² + (2 * 3x * 5) + (5)²
A = (3x + 5)²
A = (3x + 5)(3x + 5)
B = x² + 10x + 25
B = (x)² + (2 * x * 5) + (5)²
B = (x + 5)²
B = (x + 5)(x + 5)
C = 4t² + 24t + 36
C = (2t)² + (2 * 2t * 6) + (6)²
C = (2t + 6)²
C = (2t + 6)(2t + 6)
D = 9x² + 64 + 48x
D = 9x² + 48x + 64
D = (3x)² + (2 * 3x * 8) + (8)²
D = (3x + 8)²
D = (3x + 8)(3x + 8)
E = 9 + 4x² - 12x
E = 4x² - 12x + 9
E = (2x)² - (2 * 2x * 3) + (3)²
E = (2x - 3)²
E = (2x - 3)(2x - 3)
F = x² - 2x + 1
F = (x)² - (2 * x * 1) + (1)²
F = (x + 1)²
F = (x + 1)(x + 1)
G = y² - 18y + 81
G = (y)² - (2 * y * 9) + (9)²
G = (y + 9)²
G = (y + 9)(y + 9)
H = x² - 49
H = (x)² - (7)²
H = (x - 7)(x + 7)
I = 81 - t²
I = (9)² - (t)²
I = (9 - t)(9 + t)
J = 16x² - 36
J = (4x)² - (6)²
J = (4x - 6)(4x + 6)
Voilà