Sagot :
bjr
f(x) = x³ - 3x²
a)
A a pour abscisse 3/2
L'ordonnée de A est l'image de 3/2 par f
on la calcule en remplaçant x par 3/2
f(3/2) = (3/2)³ - 3*(3/2)²
= 27/8 - 3*(9/4)
= 27/8 - 27/4
= 27/8 - 54/4
= - 27/ 8
A(3/2 ; -27/8)
b)
Montrer que le coefficient directeur de la tangente en A est -9/4
le coefficient directeur de la tangent en A est la valeur de la dérivée de f(x) pour x = 3/2
f(x) = x³ - 3x²
f'(x) = 3x² - 3*2x
f'(x) = 3x² - 6x
f'(3/2) = 3*(3/2)² - 6*(3/2)
= 27/4 - 18/2
= 27/4 - 36/4
= -9/4
f'(3/2) = -9/4