Réponse :
Explications étape par étape
Bonjour
Si f(-x) = f(x) => paire
Si f(-x) = -f(x) => impaire
f(x) = x^3 - 1
f(-x) = (-x)^3 - 1
f(-x) = -x^3 - 1
Ni paire, ni impaire
f(x) = x^2 + 1
f(-x) = (-x)^2 + 1
f(-x) = x^2 + 1 = f(x)
Paire
f(x) = -5x^2 + 3x^4
f(-x) = -5(-x)^2 + 3(-x)^4
f(-x) = -5x^2 + 3x^4 = f(x)
Paire
f(x) = 2x - 4x^3
f(-x) = 2(-x) - 4(-x)^3
f(-x) = -2x + 4x^3
f(-x) = -(2x - 4x^3) = -f(x)
Impaire
f(x) = V(x^2 + 1)
f(-x) = V[(-x)^2 + 1]
f(-x) = V(x^2 + 1) = f(x)
Paire
f(x) = (x + 5)^2 = x^2 + 10x + 25
f(-x) = (-x + 5)^2 = x^2 - 10x + 25
Ni paire ni impaire