👤

Bonjour j'ai besoin d'aide pour deux exercices de maths sur les fonction qui convergent... je vous remercie d'avance pour votre aide.
je vous joins l'exo en pdf ci-dessous :

Sagot :

TENURF

Bonjour,

1) a)

[tex]f_n(0)=0 \rightarrow 0\\\\\forall x \in ]0;1[\ f_n(x)=nx^nln(x) \rightarrow 0\\\\f_n(1)=0 \rightarrow 0[/tex]

Donc (fn) converge simplement vers la fonction nulle sur [0;1]

b)

[tex]\forall x \in ]0;1[ \ g_n'(x)=-nx^{n-1}(1+nln(x))[/tex]

[tex]1+nln(x)=0 \iff nln(x)=-1 \iff x=e^{-1/n}[/tex]

[tex]g_n[/tex] est 0 en 0, croissante jusqu'en [tex]x=e^{-1/n}[/tex] puis décroissante et égale a 0 en x=1

le max de [tex]g_n[/tex] sur [0;1] est atteint en [tex]x=e^{-1/n}[/tex] et vaut

[tex]g_n(e^{-1/n})=-f_n(e^{-1/n})=-ne^{-1} \times (-\dfrac1{n})=e^{-1}[/tex]

c)

Donc

[tex]||g_n||_{\infty} = e^{-1}[/tex]

d) Elle ne converge pas uniformément car [tex]||g_n||_{\infty}[/tex] ne tend pas vers 0.

Exo 2

1)a)

[tex]|f_n(x)|\leq \dfrac1{n}\rightarrow 0[/tex]

il y a convergence simple vers la fonction nulle.

b) Comme nous avons l'inégalité précédente pour tout x réel,

[tex]||f_n||_{\infty} =\dfrac1{n} \rightarrow 0[/tex]

Donc nous avons convergence uniforme

c)

[tex]f_n'(x)=-\dfrac{n^2sin(n^2x)}{n}=-nsin(n^2x)[/tex]

pour x=0 cela vaut 0 et donc tend vers 0

pour

[tex]x=\dfrac{\pi}{2n^2}[/tex]

cela vaut -n et tend vers moins l infini

donc la suite des dérivées de converge pas.

Merci

© 2024 IDNLearn. All rights reserved.