👤

Bonjour aidez moi svp, merci d'avance
On donne la formule :
1+3+5+....+(2n-1)=n^2 pour tout entier n>=1
Illustration :
Démontrer la formule donnée ci dessus de deux manières :
1) en considérant la suite arithmétique des entiers impairs
2)par un raisonnement par récurrence

Bonjour Aidez Moi Svp Merci Davance On Donne La Formule 1352n1n2 Pour Tout Entier Ngt1 Illustration Démontrer La Formule Donnée Ci Dessus De Deux Manières 1 En class=

Sagot :

CAYLUS

Réponse :

Bonjour,

Explications étape par étape

Méthode de Gauss:

[tex]1+3+5+7+...+2n-3+2n-1=S\\2n-1+2n-3+...+3+1=S\\2n+2n+2n+..+2n+2n=2S\\\Longrightarrow\ S=\dfrac{n*2n}{2} =n^2\\[/tex]

a)

[tex]\displaystyle \sum_{i=1}^n\ (2i-1)=\dfrac{(2n-1)+1}{2} *n=n^2\\[/tex]

b)

[tex]initialisation:\\1=(2*1-1)^2\\h\'er\'edit\'e:\\\\\displaystyle \sum_{i=1}^n\ (2i-1)=n^2\ est\ vrai\\\\\displaystyle \sum_{i=1}^{n+1}\ (2i-1)=\displaystyle \sum_{i=1}^n\ (2i-1)\ +\ 2(n+1)-1\\\\=n^2+2n+2-1\\\\=(n+1)^2\\[/tex]

© 2024 IDNLearn. All rights reserved.