Sagot :
Réponse :
Explications étape par étape
Bonsoir
Les professeurs de sport du collège ont organisé une course d’orientation. Le parcours a été représenté sur la figure ci-contre. Chaque élève doit passer par des balises dans un ordre précis :A, D, C, E, F et enfin G. On donne que le triangle ACD est rectangle en C , B est le milieu de [AD] et que les droites (CD) et (GF) sont parallèles.
De plus, AB = 250m, AC = 300m, CE = 300m, GE = 150m et GF = 250m.
Calculer la distance que doit parcourir chaque élève.
AD = 2 x AB = 2 x 250 = 500 m (car B milieu de AD)
Triangle rectangle pythagore :
AD^2 = AC^2 + CD^2
CD^2 = AD^2 - AC^2
CD^2 = 500^2 - 300^2
CD^2 = 250 000 - 90 000
CD^2 = 160 000
CD = 400 m
Thales (droites // et sécantes) :
EF/EC = EG/ED = GF/CD
EF/300 = 150/ED = 250/400
EF = 250 x 300 / 400
EF = 187,5 m
Parcours :
AD + DC + CE + EF + FG
= 500 + 400 + 300 + 187,5 + 250
= 1637,5 m
Soit 1,6375 km