👤

Sagot :

Réponse :

Explications étape par étape

Ln a + Ln b = ln (ab)

ln a - Ln b = ln (a/b)

Bonsoir

Résoudre les équations :

ln(x + 2) - ln(5 - 2x) = Ln(x + 3)

ln (x + 2)/(5 - 2x) = Ln (x + 3)

(x + 2)/(5 - 2x) = x + 3

Avec : 5 - 2x # 0

2x # 5

x # 5/2

• x + 2 > 0

x > -2

• 5 - 2x > 0

5 > 2x

x < 5/2

• x + 3 > 0

x > -3

x + 2 = (x + 3)(5 - 2x)

x + 2 = 5x - 2x^2 + 15 - 6x

2x^2 + 2x + 2 - 15 = 0

2x^2 + 2x - 13 = 0

[tex]\Delta = 2^{2} - 4 * 2 * (-13) = 4 + 104 = 108[/tex]

[tex]\sqrt{\Delta} ~ 10,4

x1 = (-2 - 10,4)/(2 * 2) = -12,4/4 = -3,1

x2 = (-2 + 10,4)/4 = 8,4/4 = 2,1

Seule réponse possible 2,1

ln(x^2 - 1) << ln(4x - 1) - 2ln 2

x^2 - 1 > 0

(x - 1)(x + 1) > 0

x.........|-inf..........(-1)...........1...........+inf

x-1......|.........(-)...........(-).....o....(+)........

x+1.....|.........(-).....o....(+)...........(+).......

Ineq...|.........(+)....o.....(-)...o....(+).......

x € ]-inf ; -1[ U ]1 ; +inf[

4x - 1 > 0

4x > 1

x > 1/4

2ln 2 = Ln 2^2

Ln(x^2 - 1) << Ln (4x - 1)/(2^2)

(x - 1)(x + 1) << (4x - 1)/4

4(x - 1)(x + 1) << 4x - 1

4(x^2 - 1) - 4x + 1 << 0

4x^2 - 4 - 4x + 1 << 0

4x^2 - 4x - 3 << 0

[tex]\Delta = (-4)^{2} - 4 * 4 * (-3) = 16 + 48 = 64[/tex]

[tex]\sqrt{\Delta} = 8[/tex]

x1 = (4 - 8)/(2 * 4) = (-4/8) = (-1/2)

x2 = (4 + 8)/8 = 12/8 = 3/2

x.......|-inf...........(-1/2).........3/2..........+inf

Ineq.|.......(+)........o.....(-)......o.....(+)........

x € [-1/2 ; 3/2]

(7x - 3) ln(x + 3) > 0

7x - 3 > 0

7x > 3

x > 3/7

Ln (x + 3) > 0

x + 3 > 0

x > -3

2(Ln x)^2 + Ln x - 6 = 0

On remplace ln x par X :

2X^2 + X - 6 = 0

[tex]\Delta = 1^{2} - 4 * 2 * (-6) = 1 + 48 = 49[/tex]

[tex]\sqrt{\Delta} = 7[/tex]

X1 = (-1 - 7)/(2 * 2) = -8/4 = (-2)

X2 = (-1 + 7)/4 = 6/4 = 3/2

Ln x = -2

x = e^(-2)

Ou

Ln x = 3/2

x = e^(3/2)

© 2024 IDNLearn. All rights reserved.