J’aurais besoin d’explications sur ce exercice

Jaurais Besoin Dexplications Sur Ce Exercice class=

Sagot :

a. Je crois que tu dois utiliser la photo pour trouver les longueurs en dimension réelle, avec une règle de 3, c'est-à-dire juste de la proportionnalité :

- tu mesures le trait blanc défini comme "10 cm", pour trouver le lien entre longueur dans la réalité et longueur sur la photo.

Si par exemple, le trait blanc mesure 1 cm, tu sauras que 1 cm sur la photo veut dire 10 cm dans la réalité.

- Après ça tu mesures les côtés du triangles. Toujours dans l'exemple où     1 cm photo = 10 cm réels, si un côté du triangle mesure par exemple 15 cm sur la photo, ça veut dire qu'en taille réelle il mesure 150 cm par exemple.

De cette manière, tu trouves les longueurs réelles, et tu peux commencer à construire le triangle

Toujours dans le même exemple, en imaginant donc qu'un côté du triangle fasse 150 cm en dimensions réelles, on te demande de tracer ta figure en multipliant les longueurs réelles par 0,04 :

150 x 0,04 = 6 ; donc sur ta figure tracée, ce côté du triangle fera 6 cm de longueur.

Tu peux faire la même chose pour tous les côtés et toutes longueurs sur la photo. Et tu utilises les angles (que tu sembles déjà avoir calculé) du triangle avec un rapporteur pour orienter les côtés de ton triangle.

b. Donc pareil, mesure des longueurs sur la photo -> conversion en longueurs dimension réelle -> puis conversion en longueur sur ta figure, puis tu peux tracer le rectangle

c. Comme on l'a dit, dans la b. on a trouvé les dimensions réelles de la porte, et pour calculer l'aire d'un rectangle c'est :

A = longueur x largeur ; (avec les dimensions réelles)

puis tu calcules A' = longueur x largeur ; (avec les dimensions de ta figure tracé sur ta feuille)

Puis tu calcules [tex]\frac{A'}{A}[/tex] pour trouver "k", qui par ailleurs est forcément égal à 25, puisque tu as multiplié par 0,04 les longueurs et que :

25 est l'inverse de 0,04  ([tex]\frac{1}{0,04}[/tex] = 25)