👤

Sagot :

Réponse :

Explications étape par étape

Bonjour

Simplifie :

(x + x^2)/(x + 1)

= x(1 + x)/(x + 1)

= x

(2x^2 + 4x)/(3x + 6)

= 2x(x + 2)/[3(x + 2)]

= 2x/3

(x^3 + 3x^2)/(x^2 - 9)

= x^2(x + 3)/(x^2 - 3^2)

= x^2(x + 3)/[(x - 3)(x + 3)]

= x^2/(x - 3)

(2ax - 10x)/(a^2 - 25)

= 2x(a - 5)/(a^2 - 5^2)

= 2x(a - 5)/(a - 5)(a + 5)

= 2x/(a + 5)

(a^2 + 4a + 4)/(a^2 - 4)

= (a^2 + 2 * 2a + 2^2)/(a^2 - 2^2)

= (a + 2)^2/[(a - 2)(a + 2)]

= (a + 2)/(a - 2)

(4a^2 - 12a + 9)/(4a^2 - 9)

= [(2a)^2 - 2 * 2a * 3 + 3^2]/[(2a)^2 - 3^2]

= (2a - 3)^2/[(2a - 3)(2a + 3)]

= (2a - 3)/(2a + 3)

Réponse :

Bonjour,

1)x+x^2/1+x

x(1+x)/1+x

x

2)2x^2+4x/3x+6

2x(x+2)/3(x+2)

2x/3

3)x^3+3x^2/x^2-9

x^2(x+3)/(x-3)(x+3)

x^2/x-3

4)2ax-10x/a^2-25

2x(a-5)/(a-5)(a+5)

2x/a+5

5)a^2+4a+4/a^2-4

(a+2)^2/(a-2)(a+2)

a+2/a-2

6)4a^2-12a+9/4a^2-9

(2a-3)^2/(2a-3)(2a+3)

2a-3/2a+3

Explications étape par étape

© 2024 IDNLearn. All rights reserved.