Sagot :
Réponse :
Explications étape par étape
Bonjour
Simplifie :
(x + x^2)/(x + 1)
= x(1 + x)/(x + 1)
= x
(2x^2 + 4x)/(3x + 6)
= 2x(x + 2)/[3(x + 2)]
= 2x/3
(x^3 + 3x^2)/(x^2 - 9)
= x^2(x + 3)/(x^2 - 3^2)
= x^2(x + 3)/[(x - 3)(x + 3)]
= x^2/(x - 3)
(2ax - 10x)/(a^2 - 25)
= 2x(a - 5)/(a^2 - 5^2)
= 2x(a - 5)/(a - 5)(a + 5)
= 2x/(a + 5)
(a^2 + 4a + 4)/(a^2 - 4)
= (a^2 + 2 * 2a + 2^2)/(a^2 - 2^2)
= (a + 2)^2/[(a - 2)(a + 2)]
= (a + 2)/(a - 2)
(4a^2 - 12a + 9)/(4a^2 - 9)
= [(2a)^2 - 2 * 2a * 3 + 3^2]/[(2a)^2 - 3^2]
= (2a - 3)^2/[(2a - 3)(2a + 3)]
= (2a - 3)/(2a + 3)
Réponse :
Bonjour,
1)x+x^2/1+x
x(1+x)/1+x
x
2)2x^2+4x/3x+6
2x(x+2)/3(x+2)
2x/3
3)x^3+3x^2/x^2-9
x^2(x+3)/(x-3)(x+3)
x^2/x-3
4)2ax-10x/a^2-25
2x(a-5)/(a-5)(a+5)
2x/a+5
5)a^2+4a+4/a^2-4
(a+2)^2/(a-2)(a+2)
a+2/a-2
6)4a^2-12a+9/4a^2-9
(2a-3)^2/(2a-3)(2a+3)
2a-3/2a+3
Explications étape par étape