👤

Sagot :

bjr

Il faut suivre l'exemple donné

a)

F(x) = 4x² + 3x -1

1)

pour factoriser 4x² + 3x - 1 on commence par résoudre l'équation

4x² + 3x -1 = 0

on regarde les coefficients  du terme en x², du terme en x et le terme constant

puis on calcule le nombre que l'on écrit ∆ et qui s'appelle le discriminant

La formule du cours donne ∆ = b² - 4ac ; (à savoir par coeur)

on remplace a par 4, b par 3 et c par -1

dans cet exemple ∆ = 3² -4*4*(-1)

                             ∆ = 9 + 16 = 25

                             √∆ = 5

quand on a trouvé √∆ pour trouver les solutions on applique deux autres formules

(-b - √∆) /2a  et (-b + √∆)/2a  (formules à savoir par coeur elles aussi)

( on remplace b, √∆ et a par les valeurs de l'exercice)

on trouve deux nombres que l'on nomme x1 et x2

x1 = (-b - √∆) /2a    ;    x1 = (-3 -5)/2*4

                                   x1 = -8 / 8

                                   x1 = -1

x2 = (-b + √∆)/2a    ;   x2 = (-3 + 5)/2*4

                                   x2 = 2/8

                                   x2 = 1/4

l'équation a deux solutions qui sont -1 et 1/4

2 )

La factorisation

encore un résultat à connaître

quand un trinôme du second degré ax² + bx + c a deux racines x1 et x2

il se factorise sous la forme

a(x - x1)(x - x2)

ici on obtient

f(x) = 4(x + 1)(x - 1/4)

b)

G(x) = -2x² + 4x + 3

1) résolution de l'équation

-2x² + 4x + 3 = 0   (je vais plus vite)

∆ = b² - 4ac

        ∆ = 4² -4*(-2)*3 = 16 + 24 = 40

       √∆ = √40 = √(4*10) = 2√10

x1 =(-b - √∆) /2a  et x2 = (-b + √∆)/2a

x1 = (-4 - 2√10)/2*(-2) =  (-4 - 2√10)/-4   (on simplifie par -2)

                                 = (2 +√10)/2

x2  = (2-√10)/2

a(x - x1)(x - x2)

G(x) = -2[x - (2 +√10)/2][x -  (2-√10)/2]

remarque

à la fin du cours en jaune tu peux lire

Si ∆ > 0 il y a deux solutions

le cours n'est pas terminé, ∆ = 0 et ∆ < 0 seront étudiés par la suite

je te donne les réponses des deux derniers

h(x) : solutions x1 = (5 - √73)/-12   et    x2 =  (5 + √73)/-12

I(x) : solutions x1 = -1   et   x2 = 7/5  

© 2024 IDNLearn. All rights reserved.