Réponse :
Explications étape par étape
Bonjour
factoriser:
1) 4x^2+8x+4
= (2x)^2 + 2 * 2x * 2 + 2^2
= (2x + 2)^2
2) 7x(x-3)-(3-x)(2x-3)
= (x - 3)(7x - 3 + x)
= (x - 3)(8x - 3)
3) x^2(2+x)+x(4+2x)+(2+x)
= x^2(2 + x) + 2x(2 + x) + 1 * (2 + x)
= (2 + x)(x^2 + 2x + 1)
= (2 + x)(x + 1)^2
4) (6x-2)(2x+3)-(-9x+3)(-5x+7)
= 2(3x - 1)(2x + 3) + 3(3x - 1)(-5x + 7)
= (3x - 1)[2(2x + 3) + 3(-5x + 7)]
= (3x - 1)(4x + 6 - 15x + 21)
= (3x - 1)(-11x + 27)
5) 1/4x^2+x+1
= 1/[(2x)^2 + 2 * 2x * 1/4 + (1/4)^2 - (1/4)^2 + 1]
= 1/[(2x + 1/4)^2 - 1/16 + 16/16)
= 1/[(2x + 1/4)^2 + 15/16]