👤

calculer les expressions suivantes et donner le résultat sous forme de fraction irréductible. (mathématique)
ssvvpp c'est trop dure sa fais des heures je galère deçue

1) 5/7+(2/7-5)

2) 3/4+2×5+1/2

3)(3/2+2)(5+1/2)

4) 4/5×(5/4+1)-3/10

5) -5/7+-2/7×1/3

6) 8+21×2/3

7) 7/3-4/3÷2/5

8) 2/5+3/5+(1-1/10)

9) (1/9-3/5)(8/5+7/9)

merci à se qui me répondra svp j'ai a faire sa pour demain.

Sagot :

Bonjour,

1) 5/7+(2/7-5)

= 5/7 + [2/7 - (5 x 7) / (1 x 7)]

= 5/7 + (2/7 + 35/7)

= 5/7 + 35/7

= 42/7

= (7 x 6) / (7 x 1)

= 6

2) 3/4+2×5+1/2

= 3/4 + 10 + 1/2

= 3/4 + (10 x 4) / (1 x 4) + (1 x 2) / (2 x 2)

= 3/4 + 40/4 + 2/4

= 45/4

3)(3/2+2)(5+1/2)

= [3/2 + (2 x 2) / (1 x 2)] x [(5 x 2) / (1 x 2) + 1/2]

= (3/2 + 4/2) x (10/2 + 1/2)

= 7/2 x 11/12

= 77/4

4) 4/5×(5/4+1)-3/10

= 4/5 x [5/4 + (1 x 4) / (1 x 4)] - 3/10

= 4/5 x (5/4 + 4/4) - 3/10

= 4/5 x 9/4 - 3/10

= 36/20 - 3/10

= (2 x 18) / (2 x 10) - 3/10

= 18/10 - 3/10

= 15/10

= (5 x 3) / (5 x 2)

= 3/2.

5) -5/7+-2/7×1/3

= - 5/7 - 2/21

= (- 5 x 3) / (7 x 3) - 2/21

= - 15/21 - 2/21

= - 17/21

6) 8+21×2/3

= 8 + 42/3

= 8 + 14

= 22

7) 7/3-4/3÷2/5

= 7/3 - 4/3 x 5/2

= 7/3 - 20/6

= 7/3 - (2 x 10) / (2 x 3)

= 7/3 - 10/3

= - 3/3

= - 1

8) 2/5+3/5+(1-1/10)

= (2 x 2) / (5 x 2) + (3 x 2) / (5 x 2) + [(1 x 10) / (1 x 10) - 1/10]

= 4/10 + 6/10 + (10/10 - 1/10)

= 10/10 + 9/10

= 19/10.

9) (1/9-3/5)(8/5+7/9)

= [(1 x 5) / (9 x 5) - (3 x 9) / (5 x 9)] [(8 x 9) / (5 x 9) + (7 x 5) / (8 x 5)]

= (5/45 - 27/45) x (72/45 + 35/45)

= - 22/45 x 2 520/45

= - 55 440/2 0254

= (45 x - 1 232) / (45 x 45)

= - 1 232/45.

© 2024 IDNLearn. All rights reserved.