bonjours pourriez vous m'aider sur les systèmes s'il vous plaît ?​

Bonjours Pourriez Vous Maider Sur Les Systèmes Sil Vous Plaît class=

Sagot :

Réponse :

bonsoir

résoudre

3x-4y=-1

-2x+5y=2

-2×3x-(-2)×4y=-2×(-1)

-6x+8y=2

-3×(-2x)+(-3)×5y=-3×2

6x-15y=-6

6x-6x=0

8y-15y=-7y  et 2-6=-4

donc -7y=-4

y=4/7

3x-4(4/7)=-1

3x-16/7=-1

3x=-1+16/7=9/7

x=9/7÷3=3/7

solution x=3/7 et y =4/7

-4x+3y=2

-2x+5y=-3

2×(-4x)+2×3y=2×2

-8x+6y=4

-4×(-2x)+(-4)×5y=-4×(-3)

8x-20y=12

-8x+8x=0

6y-20y=-14y

4+12=16

-14y=16

y=16/-14=-8/7

-4x+3×-8/7=2

-4x-24/7=2

-4x=2+24/7

-4x=38/7

x=38/7÷(-4)=-19/14

solution x=-19/14 et y=-8/7

3x-y=1

-2x+3y=2

2×3x-2×y=2×1

6x-2y=2

3×(-2x)+3×3y=2×3

-6x+9y=6

-2y+9y=7y

2+6=8

7y=8

y=8/7

3x-8/7=1

3x=1+8/7

3x=15/7

x=15/7÷3=5/7

solution x=5/7 et y =8/7

Explications étape par étape

CAYLUS

Réponse :

Bonsoir,

Explications étape par étape

1) Par combinaison linéaire

[tex]\left\{\begin {array} {ccc|c|c}3x-4y&=&-1&5&2\\-2x+5y&=&2&4&3\\\end{array}\right.\\\\\\\left\{\begin {array} {ccc}7x&=&3\\\\7y&=&4\\\end{array}\right.\\\\\\\boxed{\left\{\begin {array} {ccc}x&=&\dfrac{3}{7}\\\\y&=&\dfrac{4}{7}\\\end{array}\right.\\}\\[/tex]

2) Méthode de Cramer

[tex]\left\{\begin {array} {ccc}-4x+3y&=&2\\-2x+5y&-3\\\end{array}\right.\\\\\\\Delta=\left\\\begin{array}{|cc|}-4&3\\-2&5\\\end{array}\right. = -10+6=-14\\\\\\\Delta_1 =\left\\\begin{array}{|cc|}2&3\\-3&5\\\end{array}\right. = 10+9=19\\\\\\\Delta_2 =\left\\\begin{array}{|cc|}-4&2\\-2&-3\\\end{array}\right. =12+4=16\\\\\\\boxed{\left\{\begin{array}{ccc}x&=-&\dfrac{19}{14}\\\\y&=-&\dfrac{16}{14}\\\end{array}\right.\\}\\[/tex]

3)  Par élimination

[tex]\left\{\begin{array}{ccc}3x-y&=&1\\-2x+3y&=&2\\\end{array}\right.\\\\\\\left\{\begin{array}{ccc}y&=&3x-1\\-2x+3(3x-1)&=&2\\\end{array}\right.\\\\\\\left\{\begin{array}{ccc}7x&=&5\\\\y&=&3*\dfrac{5}{7} -1\\\end{array}\right.\\\\\\\left\{\begin{array}{ccc}x&=&\dfrac{5}{7} \\\\y&=&\dfrac{8}{7}\\\end{array}\right.\\\\[/tex]

d) équation impossible

[tex]\left\{\begin{array}{ccc}3x-2y&=&-1\\\\-3x+2y&=&2\\\end{array}\right.\\\\\\Somme\ des\ 2\ \' equations\\0*x+0*y=1 \Longrightarrow\ 0=1\ impossible[/tex]