Sagot :
bjr
1)
Un point de la courbe Cf a pour abscisse x et pour ordonnée f(x)
Un point de la courbe Cg a pour abscisse x et pour ordonnée g(x)
Résoudre l'équation f(x) = g(x) c'est trouver pour quelle même valeur de x
les points des courbes Cf et Cg ont la même ordonnée.
Cela se produit au(x) point(s) d'intersection des deux courbes
On lit sur le graphique que le point d'intersection a pour abscisse 2
f(x) = g(x) a pour solution 2
[et dans ce cas f(2) = g(2) = 1 ]
2)
ici on cherche les abscisses des points de la courbe Cf qui sont en-dessous de la courbe Cg [f(x) < g(x)]
ce sont les abscisses des points situés à droite du point d'intersection (point noir). leurs abscisses vont de 2 à 6 ; 2 exclu à cause de "<"
solution : ] 2 ; 6]
remarque
à gauche du point d'intersection, les ordonnées des points de la courbe rouge sont au-dessus des points de la courbe verte [f(x > g(x)]