Sagot :
Bonsoir
6) h(x) = 5x² - 4x + 3
a) h(2) = 5*2² - 4*2 + 3
h(2) = 5*4 - 8 + 3
h(2) = 20 - 8 + 3
h(2) = 15
b) h(-3) = 5*(-3)² - 4*(-3) + 3
h(-3) = 5*9 + 12 + 3
h(-3) = 45 + 12 + 3
h(-3) = 60
c) h(2/3) = 5*(2/3)² - 4*(2/3) + 3
h(2/3) = 5*4/9 - 8/3 + 3
h(2/3) = 20/9 - 24/9 + 27/9
h(2/3) = 23/9
d) h(0) = 5*0² - 4*0 + 3
h(0) = 0 - 0 + 3
h(0) = 3
e) h(1,4) = 5*(1,4)² - 4*(1,4) + 3
h(1,4) = 5*1,96 - 5,6 + 3
h(1,4) = 9,8 - 5,6 + 3
h(1,4) = 7,2
10) [tex]f(x)=2\sqrt{x}+1[/tex]
[tex]a)\ f(0)=2\sqrt{0}+1= 0 +1=1\\\\b)\ f(4)=2\sqrt{4}+1=2\times2+1=4+1=5[/tex]
c) Impossible car on ne peut pas prendre la racine carré d'un nombre négatif.
Il est impossible de calculer la racine carrée de -9.
[tex]d)\ f(3)=2\sqrt{3}+1\approx 4,464\\\\e)\ f(0,25)=2\sqrt{0,25}+1=2\times0,5+1=2\\\\f)\ f(\dfrac{25}{36})=2\sqrt{\dfrac{25}{36}}+1=2\times\dfrac{5}{6}+1=\dfrac{5}{3}+1=\dfrac{5}{3}+\dfrac{3}{3}=\dfrac{8}{3}[/tex]
27) a)
x -3 -1 0 -4,5 ou -0,5 ou 2,3 -4,9 ou 0 ou 1,9 -3 ou 3
f(x) 6 0,5 -3 -5 -3 6
b)
x -2 0 3 n'existe pas -1 ou 2 0 ou 1
g(x) 0 -3 0 -6 -2 -3
c) L'image maximale pour f (si x est compris entre -7 et 0) est 6.
d) 0,5 est une valeur approchée du nombre qui a la plus petite image par g.
6) h(x) = 5x² - 4x + 3
a) h(2) = 5*2² - 4*2 + 3
h(2) = 5*4 - 8 + 3
h(2) = 20 - 8 + 3
h(2) = 15
b) h(-3) = 5*(-3)² - 4*(-3) + 3
h(-3) = 5*9 + 12 + 3
h(-3) = 45 + 12 + 3
h(-3) = 60
c) h(2/3) = 5*(2/3)² - 4*(2/3) + 3
h(2/3) = 5*4/9 - 8/3 + 3
h(2/3) = 20/9 - 24/9 + 27/9
h(2/3) = 23/9
d) h(0) = 5*0² - 4*0 + 3
h(0) = 0 - 0 + 3
h(0) = 3
e) h(1,4) = 5*(1,4)² - 4*(1,4) + 3
h(1,4) = 5*1,96 - 5,6 + 3
h(1,4) = 9,8 - 5,6 + 3
h(1,4) = 7,2
10) [tex]f(x)=2\sqrt{x}+1[/tex]
[tex]a)\ f(0)=2\sqrt{0}+1= 0 +1=1\\\\b)\ f(4)=2\sqrt{4}+1=2\times2+1=4+1=5[/tex]
c) Impossible car on ne peut pas prendre la racine carré d'un nombre négatif.
Il est impossible de calculer la racine carrée de -9.
[tex]d)\ f(3)=2\sqrt{3}+1\approx 4,464\\\\e)\ f(0,25)=2\sqrt{0,25}+1=2\times0,5+1=2\\\\f)\ f(\dfrac{25}{36})=2\sqrt{\dfrac{25}{36}}+1=2\times\dfrac{5}{6}+1=\dfrac{5}{3}+1=\dfrac{5}{3}+\dfrac{3}{3}=\dfrac{8}{3}[/tex]
27) a)
x -3 -1 0 -4,5 ou -0,5 ou 2,3 -4,9 ou 0 ou 1,9 -3 ou 3
f(x) 6 0,5 -3 -5 -3 6
b)
x -2 0 3 n'existe pas -1 ou 2 0 ou 1
g(x) 0 -3 0 -6 -2 -3
c) L'image maximale pour f (si x est compris entre -7 et 0) est 6.
d) 0,5 est une valeur approchée du nombre qui a la plus petite image par g.