Sagot :
le double du produit de deux nombres ajoutés à la somme de leur carrés est égal au carré de leur somme.
On l'écrit sous forme mathématique :
2(ab)+(a²+b²) = (a+b)²
on développe (a+b)²
(a+b)² = (a+b)(a+b)
(a+b)² = a*a+ab+ab+b*b (* signifie multiplié par)
(a+b)² = a²+2ab+b²
(a+b)² = 2(ab)+(a²+b²)
le double de la somme des carrés de deux nombres est égal au carré de leur somme augmenté du carré de leur différence.
On l'écrit sous forme mathématique :
2(a²+b²) = (a+b)²+(a-b)²
(a+b)² = a²+2ab+b² (démontrer à la question précédente)
(a-b)² si tu l'as vue en cours tu dis :
(a-b)² est une identité remaquable égale à a²-2ab+b²
sinon
(a-b)² = (a-b)(a-b)
(a-b)² = a*a-ab-ba+b*b (* signifie multiplié par)
(a-b)² = a²-2ab+b²
donc
(a+b)²+(a-b)² = a²+2ab+b² + a²-2ab+b²
(a+b)²+(a-b)² = 2a²+2b² +2ab-2ab
(a+b)²+(a-b)² = 2(a²+b²)
On l'écrit sous forme mathématique :
2(ab)+(a²+b²) = (a+b)²
on développe (a+b)²
(a+b)² = (a+b)(a+b)
(a+b)² = a*a+ab+ab+b*b (* signifie multiplié par)
(a+b)² = a²+2ab+b²
(a+b)² = 2(ab)+(a²+b²)
le double de la somme des carrés de deux nombres est égal au carré de leur somme augmenté du carré de leur différence.
On l'écrit sous forme mathématique :
2(a²+b²) = (a+b)²+(a-b)²
(a+b)² = a²+2ab+b² (démontrer à la question précédente)
(a-b)² si tu l'as vue en cours tu dis :
(a-b)² est une identité remaquable égale à a²-2ab+b²
sinon
(a-b)² = (a-b)(a-b)
(a-b)² = a*a-ab-ba+b*b (* signifie multiplié par)
(a-b)² = a²-2ab+b²
donc
(a+b)²+(a-b)² = a²+2ab+b² + a²-2ab+b²
(a+b)²+(a-b)² = 2a²+2b² +2ab-2ab
(a+b)²+(a-b)² = 2(a²+b²)