Sagot :
La fonction carrée est croissante sur 0; plus l'infini, donc si racine carré de x < x+1/3 alors x<(x+1/3) au carré
La réciproque est aussi vrai puisque la fonction racine carrée est aussi croissante sur 0, plus l'infini.
Reste a démontrer que x<(x+1/3)^2 est vraie sur l'intervalle. Donc étudions le signe de (x+1/3)^2 - x = x^2 -x/3+1/9
delta négatif: pas de racine, donc l'expression est du signe de a qui est positif.
donc
x<(x+1/3)^2 est vraie donc la première inégalité est vraie.
La réciproque est aussi vrai puisque la fonction racine carrée est aussi croissante sur 0, plus l'infini.
Reste a démontrer que x<(x+1/3)^2 est vraie sur l'intervalle. Donc étudions le signe de (x+1/3)^2 - x = x^2 -x/3+1/9
delta négatif: pas de racine, donc l'expression est du signe de a qui est positif.
donc
x<(x+1/3)^2 est vraie donc la première inégalité est vraie.