1) On a Cmoy(q) = C1(q)/q , donc C'moy(q) = (q C'1(q) - C1(q))/q^2.
On a C'moy(q0) = 0 donc q C'1(q) - C1(q) = 0 .
La tangente au point q0 à la courbe représentative de la fonction C1 est y = C'1(q0) (q - q0) + C1(q0) = C'1(q0) q - C'1(q0) q0 + C1(q0) = C'1(q0) q - (q0C'1(q0) - C1(q0)) = C'1(q0) q puisque q0C'1(q0) - C1(q0) = 0 , ce qui donne la fonction représentative de la tangente au point q0 est linéaire et donc passe par l'origine .