Sagot :
un nombre est parfait s'il est la somme de ses diviseurs propres
Dans le Livre IX de ses Éléments, le mathématicien Euclide, au IIIe siècle av. J.-C., a prouvé que si est premier, alors est parfait.
Ainsi :
…Par ailleurs, Leonhard Euler, au XVIIIe siècle, a prouvé que tout nombre parfait pair est de la forme proposée par Euclide. La recherche de nombres parfaits pairs est donc liée à celle des nombres premiers de Mersenne (nombres premiers de la forme 2p − 1).
Il est établi que tout nombre parfait pair se termine par un 6 ou un 8, mais pas forcément en alternance.
En 2000, Douglas Iannucci a démontré que tous les nombres pairs parfaits sont des nombres de Kaprekar en base deux1.
Les nombres parfaits pairs étant de la forme 2n−1(2n − 1), ce sont des nombres triangulaires, et, en tant que tels, la somme des entiers naturels jusqu'à un certain rang, en l'occurrence 2n − 1. De plus, tous les nombres parfaits pairs, excepté le premier, sont la somme des 2(n−1)/2 premiers cubes impairs :
.