S'il vous plait, j'ai besoin d'aide :)
Montrez que , pour tout réel x>=0, on a :
f(x) - g(x) = x2/1+x
En deduire que sur [ 0 ; +infini [ , g(x) <= f(x)
f(x) = 1/1+x g(x) = 1-x
Merci :)
f(x) - g(x) = 1/(1+x)-(1-x)
= ( 1-(1-x)(1+x) )/'1+x) = (1- (1-x^2))/(1+x)=x^2/(1+x)
x^2/(1+x) >= 0 pour x>=0
donc f(x)-g(x)>=0 donc f(x)>= g(x) pour x>=0