K(x) = 5/x^2. On calcule le taux de variation entre 1 et 1+h. Ainsi je trouve t(h) = (-5h-10)/(1+h)^2.
L’énoncé de mon exo est : montrez que k est dérivable en 1. Donc je calcule, avec h—>0, la limite lim( (-5h-10)/(1+h)^2 ) = -10.
Mais comment puis je démontrer que k est dérivable en 1 si la limite est -10, et que ça ne passe pas par 1.